Sodium channel expression within chronic multiple sclerosis plaques.

نویسندگان

  • Joel A Black
  • Jia Newcombe
  • Bruce D Trapp
  • Stephen G Waxman
چکیده

Multiple sclerosis (MS) is characterized by focal destruction of myelin sheaths, gliotic scars, and axonal damage that contributes to the accumulation of nonremitting clinical deficits. Previous studies have demonstrated coexpression of sodium channel Nav1.6 and the sodium-calcium exchanger (NCX), together with beta-amyloid precursor protein (beta-APP), a marker of axonal damage, in degenerating axons within acute MS lesions. Axonal degeneration is less frequent within chronic MS lesions than in acute plaques, although current evidence suggests that axonal loss in chronic lesions ("slow burn") is a major contributor to accumulating disability. It is not known, however, whether axonal degenerations in chronic and acute lesions share common mechanisms, despite radically differing extracellular milieus. In this study, the expression of sodium channels Nav1.2 and Nav1.6 and of NCX was examined in chronic MS plaques within the spinal cord. Nav1.2 immunostaining was not observed along demyelinated axons in chronic lesions but was expressed by scar and reactive astrocytes within the plaque. Nav1.6 immunoreactivity, which was intense at nodes of Ranvier in normal appearing white matter in the same sections, was present in approximately one-third of the demyelinated axons within these plaques in a patchy rather than continuous distribution. NCX was not detected in demyelinated axons within chronic lesions, although it was clearly present within the scar astrocytes surrounding the demyelinated axons. beta-APP accumulation occurred in a small percentage of axons within chronic lesions within the spinal cord, but beta-APP was not preferentially present in axons that expressed Nav1.6. These observations suggest that different mechanisms underlie axonal degeneration in acute and chronic MS lesions, with axonal injury occurring at sites of coexpression of Nav1.6 and NCX in acute lesions but independent of coexpression of these 2 molecules in chronic lesions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis.

Saltatory conduction in myelinated fibres depends on the specific molecular organization of highly specialized axonal domains at the node of Ranvier, the paranodal and the juxtaparanodal regions. Voltage-gated sodium channels (Na(v)) have been shown to be deployed along the naked demyelinated axon in experimental models of CNS demyelination and in multiple sclerosis lesions. Little is known abo...

متن کامل

Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states(1).

Although classical neurophysiological doctrine rested on the concept of the sodium channel, it is now clear that there are nearly a dozen sodium channel genes, each encoding a molecularly distinct channel. Different repertoires of channels endow different types of neurons with distinct transduction and encoding properties. Sodium channel expression is highly dynamic, exhibiting plasticity at bo...

متن کامل

Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger.

Although voltage-gated sodium channels are known to be deployed along experimentally demyelinated axons, the molecular identities of the sodium channels expressed along axons in human demyelinating diseases such as multiple sclerosis (MS) have not been determined. Here we demonstrate changes in the expression of sodium channels in demyelinated axons in MS, with Nav1.6 confined to nodes of Ranvi...

متن کامل

Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model.

Although there is growing evidence for a role of excess intracellular cations, particularly calcium ions, in neuronal and glial cell injury in multiple sclerosis, as well as in non-inflammatory neurological conditions, the molecular mechanisms involved are not fully determined. We previously showed that the acid-sensing ion channel 1 which, when activated under the acidotic tissue conditions fo...

متن کامل

Temporal course of upregulation of Na(v)1.8 in Purkinje neurons parallels the progression of clinical deficit in experimental allergic encephalomyelitis.

Multiple sclerosis (MS) is recognized to involve demyelination and axonal atrophy but accumulating evidence suggests that dysregulated sodium channel expression may also contribute to its pathophysiology. Recent studies have demonstrated that the expression of Na(v)1.8 voltage-gated sodium channels, which are normally undetectable within the CNS, is upregulated in cerebellar Purkinje cells in e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuropathology and experimental neurology

دوره 66 9  شماره 

صفحات  -

تاریخ انتشار 2007